\(\int \frac {(b \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [109]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 80 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b^2 (A+C) \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {b^2 C \sqrt {b \cos (c+d x)} \sin ^3(c+d x)}{3 d \sqrt {\cos (c+d x)}} \]

[Out]

b^2*(A+C)*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-1/3*b^2*C*sin(d*x+c)^3*(b*cos(d*x+c))^(1/2)/d/cos
(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {17, 3092} \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b^2 (A+C) \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {b^2 C \sin ^3(c+d x) \sqrt {b \cos (c+d x)}}{3 d \sqrt {\cos (c+d x)}} \]

[In]

Int[((b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2),x]

[Out]

(b^2*(A + C)*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) - (b^2*C*Sqrt[b*Cos[c + d*x]]*Sin[c + d
*x]^3)/(3*d*Sqrt[Cos[c + d*x]])

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 3092

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[-f^(-1), Subst[I
nt[(1 - x^2)^((m - 1)/2)*(A + C - C*x^2), x], x, Cos[e + f*x]], x] /; FreeQ[{e, f, A, C}, x] && IGtQ[(m + 1)/2
, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int \cos (c+d x) \left (A+C \cos ^2(c+d x)\right ) \, dx}{\sqrt {\cos (c+d x)}} \\ & = -\frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \text {Subst}\left (\int \left (A+C-C x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d \sqrt {\cos (c+d x)}} \\ & = \frac {b^2 (A+C) \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {b^2 C \sqrt {b \cos (c+d x)} \sin ^3(c+d x)}{3 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.65 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(b \cos (c+d x))^{5/2} (6 A+5 C+C \cos (2 (c+d x))) \sin (c+d x)}{6 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[((b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(6*A + 5*C + C*Cos[2*(c + d*x)])*Sin[c + d*x])/(6*d*Cos[c + d*x]^(5/2))

Maple [A] (verified)

Time = 8.29 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.62

method result size
default \(\frac {b^{2} \left (C \left (\cos ^{2}\left (d x +c \right )\right )+3 A +2 C \right ) \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{3 d \sqrt {\cos \left (d x +c \right )}}\) \(50\)
risch \(\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (4 A +3 C \right ) \sin \left (d x +c \right )}{4 \sqrt {\cos \left (d x +c \right )}\, d}+\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, C \sin \left (3 d x +3 c \right )}{12 \sqrt {\cos \left (d x +c \right )}\, d}\) \(77\)
parts \(\frac {A \,b^{2} \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}}+\frac {C \,b^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{3 d \sqrt {\cos \left (d x +c \right )}}\) \(77\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*b^2/d*(C*cos(d*x+c)^2+3*A+2*C)*sin(d*x+c)*(cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.68 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (C b^{2} \cos \left (d x + c\right )^{2} + {\left (3 \, A + 2 \, C\right )} b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/3*(C*b^2*cos(d*x + c)^2 + (3*A + 2*C)*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c)/(d*sqrt(cos(d*x + c)))

Sympy [F(-1)]

Timed out. \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.80 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {12 \, A b^{\frac {5}{2}} \sin \left (d x + c\right ) + {\left (b^{2} \sin \left (3 \, d x + 3 \, c\right ) + 9 \, b^{2} \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (3 \, d x + 3 \, c\right ), \cos \left (3 \, d x + 3 \, c\right )\right )\right )\right )} C \sqrt {b}}{12 \, d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/12*(12*A*b^(5/2)*sin(d*x + c) + (b^2*sin(3*d*x + 3*c) + 9*b^2*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c))))*C*sqrt(b))/d

Giac [F]

\[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 0.65 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.70 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b^2\,\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (12\,A\,\sin \left (c+d\,x\right )+9\,C\,\sin \left (c+d\,x\right )+C\,\sin \left (3\,c+3\,d\,x\right )\right )}{12\,d\,\sqrt {\cos \left (c+d\,x\right )}} \]

[In]

int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x)^(3/2),x)

[Out]

(b^2*(b*cos(c + d*x))^(1/2)*(12*A*sin(c + d*x) + 9*C*sin(c + d*x) + C*sin(3*c + 3*d*x)))/(12*d*cos(c + d*x)^(1
/2))